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We will prove a refinement of Pinsker’s inequality by way of a thought experiment: we show
that a hypothetical medical trial would extract and exploit a relatively large amount of information
about the treatments it is testing, but an amount which is necessarily constrained by the classical
upper-bound of Lai and Robbins. We propose the manifest inequality as a Pinsker-like inequality
which may be of independent interest.

Theorem 1. Let 0 < p1, p2 < 1, and d(p1, p2) denote the relative entropy between the distributions
Bern(p1) and Bern(p2). Then

max

(
2,

1

24p(1− p)

)
(p1 − p2)

2 ≤ d(p1, p2)

where p is the arithmetic mean of p1 and p2.

This is stronger than Pinsker’s inequality for |p − 1/2| >
√
11/48, as well as its refinements

proven in [1] and [2], for |p− 1/2| ≳ 0.485. While Pinsker’s inequality states

2(p1 − p2)
2 ≤ d(p1, p2)

in [1], the authors compute an optimal prefactor ϕ(p1) such that

ϕ(p1)(p1 − p2)
2 ≤ d(p1, p2)

One can view our result here as the analogous statement except for a prefactor ψ(p) = 1/24p(1− p)
such that

ψ(p)(p1 − p2)
2 ≤ d(p1, p2)

Another way of interpreting Theorem 1 is the following: Pinsker’s inequality compares d(p1, p2)
to the absolute difference between p1 and p2. Theorem 1 provides a tighter bound by comparing
d(p1, p2) not only to the difference |p1−p2| between p1 and p2, but also to their the sum, p1+p2 = 2p.
In particular, it bounds d(p1, p2) in terms of a rational function of the sum and difference of p1 and
p2.

1 Setup

1.1 Clinical trials

In what follows, we will give an informal overview of clinical trial design and its connection with
the Lai-Robbins theorem; for a more thorough explanation, see [3]. Given repeated choices between

1



two options, say with expected utility θ0 and θ1, respectively, the classical theorem of Lai and
Robbins provides an upper bound on the amount of effective information which may be extracted
and exploited in real-time, made precise in terms of the relative entropy d(θ0, θ1). One case in which
the Lai-Robbins theorem applies is that of trials of experimental medical treatments. Here, we
propose a system of extracting and exploiting information about experimental medical treatments
by first performing a randomized controlled trial to determine which treatment, if any, is statistical
superior to the others, and subsequently applying that treatment to the remainder of the population.

The Lai-Robbins upper bound, in terms of the relative entropy between the treatment effects,
applies to this situation as well. In fact, the expected utility achieved by this situation is close
enough to the Lai-Robbins upper bound to demonstrate Theorem 1.

1.2 Bandit formulation

In the case of particular interest here, we will consider the following scenario: Suppose that 0 <
pA, pB < 1 are fixed and known. Consider a game in which you repeatedly draw prizes from two
boxes, one with expected utility θ1 = (pA + pB)/2, and the other with expected utility θ0, where θ0
is either pA or pB (but it is not known which is equal to θ0). In each round of the game, you choose
which box to draw a prize from based on your previous choices and the utilities you subsequently
observed.

We will use the strategy for solving this setup proposed in [3], together with the extension of the
Lai-Robbins theorem proven by Burnetas and Katehakis, to prove Theorem 1.

1.3 Utility

In this section, we briefly review the medical trial design proposed in [3]. Suppose that to each
patient we may administer two treatments with expected utilities θ0 and θ1, respectively. Given a
total number of patients to be treated N , The proposal of [3] is to select a subset of n ≤ N for
a randomized controlled trial, and then apply the statistically superior treatment to the remaining
N − n patients. A randomized controlled trial consists of applying the treatment 0 (with expected
utility θ0) to half of the n trial patients, and treatment 1 (with expected utility θ1) to the other half
of the trial patients.

Based on the reactions of these first n patients to the treatments, a Z-test may be performed; it
will indicate the treatment found to be statistically superior. In [3], the probability of incorrectly
concluding that the inferior treatment is in fact superior is calculated to be

Φ

(
−|A|

√
n√

B

)
This is a standard calculation. If Xi represents the (random) utility of the ith patient, the total
expected utility, as a proportion of the maximum achievable offline utility N max θ, is

Ũ(θ) =
Eπ[

∑N
i=1Xi]

maxπ′ Eπ′ [
∑N

i=1Xi]
=

Eπ[
∑N

i=1Xi]

N max θ

As in [3], one can then derive that with this choice of utility function, if Ũn(θ) represents the expected
utility of the policy in which n ≤ N patients are chosen for trial in the procedure described above,
we have

Ũn(θ) =
n

2N

(
1 +

min θ

max θ

)
+
N − n

N

(
1−

(
1− min θ

max θ

)
Φ

(
−|A|

√
n√

B

))
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2 Proof of Theorem 1

Choosing n∗ = c logN samples, we see that in the large sample limit

U = 1− c

2

(
1− min θ

max θ

)
logN

N
(1 + o(1))

which corresponds to regret equal to

R =
c

2
|δ|(1 + o(1)) logN

for all θ such that c ≥ 4(σ2
0+σ2

1)
δ2 (i.e. F ≥ 1). Since σ2

0 +σ
2
1 = θ0(1−θ0)+θ1(1−θ1) ≤ 1/2, it suffices

to take c such that c ≥ 2
δ2 ≥ 4(σ2

0+σ2
1)

δ2 .
To this end, we will do the following. Say that we are given pA < pB ∈ (0, 1). Let p =

(pA + pB)/2 ∈ (pA, pB) and ∆ = |pB − pA|/2 > 0. Put Θ0 = {pA, pB} and Θ1 = {p} so that,
conceptually, we imagine a one-parameter hypothesis test

H0 : θ = pA or θ = pB

H1 : θ = p

For all (θ0, θ1) ∈ Θ0 ×Θ1, we then immediately have that

|δ| ≥ ∆ (1)

where δ = θ1 − θ0. Define σ2
max = max{σ2(pA), σ

2(pB)}, where where σ2(λ) = λ(1 − λ). Trivially,
this means that

σ2(θ0) ≤ σ2
max ∀θ0 ∈ Θ0 (2)

Finally, let us take

c =
4(σ2

max + σ2(p))

∆2

Now, it follows from Equation 1 and Equation 2 that for all (θ0, θ1) ∈ Θ0 ×Θ1 we have

4(σ2(θ0) + σ2(θ1))

δ2
≤ 4(σ2

max + σ2(p))

∆2

and thus F ≥ 1 for all θ ∈ Θ0 ×Θ1. This means that we have regret bounded by

R ≤ 2(σ2
max + σ2(p))

∆2
|θ1 − θ0| logN(1 + o(1)) (3)

for all θ ∈ Θ0 ×Θ1.
We now show that this setup satisfies the conditions for the forward direction of the Burnetas

& Katehakis theorem. In the notation of the paper, we have two populations, Θ0 and Θ1, each one
dimensional so that θ0 = θ0 and θ1 = θ1. Then with Θ = Θ0 ×Θ1, θ = (θ0, θ1) ∈ Θ. We also have
µa(θa) = θa since the expectation of a Bernoulli distribution is equal to its parameter.

Consider θ = (θ0, θ1) = (pA, p) ∈ Θ. Then µ∗(θ) := maxa=0,1{µa(θa)} = θ1 = p since by
construction, p > pA. Then O(θ) := {a : µa = µ∗(θ)} = {a : θa = p} = {1}. We also compute

∆Θ0(θ0) = {θ′0 ∈ Θ0 : θ′0 > p} = {pB} ≠ ∅

3



Now, recall that B(θ) := {a : a /∈ O(θ) and ∆Θa(θa) ̸= ∅}. Since O(θ) = {1}, this forces 1 /∈ B(θ).
However, a = 0 satisfies the conditions required to be in B(θ) as computed above, so we have
B(θ) = {0}.

We have one last quantity to compute. K0(θ) = inf{I(θ0, θ
′
0) : θ

′
0 ∈ ∆Θ0(θ0} = inf{d(θ0, θ′0) :

θ′0 ∈ {pB}}. where d(x, y) denotes the Bernoulli KL divergence between x and y. Thus,

K0(θ) = d(θ0, pB)

This quantity is nonzero because θ0 = pA < pB by construction and d(x, y) vanishes only for x = y.
We can finally state and use the main theorem of Burnetas and Katehakis. Indeed, θ ∈ Θ is such

that 0 ∈ B(θ) and K0(θ) ̸= 0. It is also true that the policy π which dictates the RCT mechanism
we are proposing lies in the class of uniformly fast convergent policies CUF , as defined in the paper:
π ∈ CUF if ∀θ ∈ Θ, Rπ

N (θ) = oN→∞(Nα), ∀α > 0. This criterion follows by our regret bound,
Equation 3, that pathwise for each fixed θ ∈ Θ,

Rπ
N = O(logN) = o(Nα) ∀α > 0.

Given that the conditions of the theorem are satisfied, we have the conclusion

lim
N→∞

Eπ
θTN (0)

logN
≥ 1

K0(θ)
=

1

d(pA, pB)

Using the relation Rπ
N = (θ1 − θ0)Eπ

θTN (0) for θ such that θ0 < θ1, it follows that

lim
N→∞

Rπ
N

logN
≥ (θ1 − θ0)

d(pA, pB)

In view of Equation 3, we have then that

lim
N→∞

2(σ2
max + σ2(p))

∆2
(1 + h(N)) ≥ 1

d(pA, pB)

where h(x) is a suitable function having the property that limx→∞ h(x) = 0. Evaluating the limit
for our fixed choices of pA, pB , we conclude that

2(σ2
max + σ2(p))(
pB−pA

2

)2 ≥ 1

d(pA, pB)

Rearranging,

d(pA, pB) ≥
(
pB−pA

2

)2
2(σ2

max + σ2(p))
=

(pB − pA)
2

8(σ2
max + σ2(p))

With a final bound σ2(pA), σ
2(pB) ≤ 2σ2(p) by Jensen’s inequality, we have

d(pA, pB) ≥
(pB − pA)

2

24σ2(p)

which is stronger than Pinsker’s inequality for sufficiently small p.
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